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DOUBLE - INTEGRATION METHOD  
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16.1. General theory. 

The deformation of а beam is most easily expressed in terms of 

the deflection of the beam from its original unloaded position. The 

deflection is measured from the original neutral surface to the 

neutral surface of the deformed beam. The configuration assumed 

by the deformed neutral surface is known as the elastic curve of the 

beam. Figure 16.1 represents the beam in the deformed 

configuration it has assumed under the action of the load. 

The displacement f  is defined as the deflection of the beam. Often it 

will be necessary to determine the deflection y  for every value of x  

along the beam. This relation may be written in the form of an equation 

which is frequently called the equation of the deflection curve (or elastic 

curve) of the beam. 

Specifications for the design of beams frequently impose 

limitations upon the deflections as well as the stresses. For example, 

in many building codes the maximum allowable deflection of а 

Fig. 16.1 



beam is not to exceed 
300

1
 of the length of the beam. Components 

of aircraft usually are designed so that deflections do not exceed 

some reassigned value, else the aerodynamic characteristics may be 

altered. Thus, а well-designed beam must not only be able to carry 

the loads to which it will be subjected but it must not undergo 

undesirably large deflections. Also, the evaluation of reactions of 

statically indeterminate beams involves the use of various 

deformation relationships. 

Numerous methods are available for the determination of beam 

deflections. The most commonly used are the following: double - 

integration method and elastic energy methods. 

On beginning 

16.2. Double - integration method. The differential equation of 

the deflection curve of the bent beam is: 
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where x  and y  are the coordinates shown in Fig. 16.10. That is, y  is the 

deflection of the beam. In the equation E  denotes the modulus of 

elasticity of the beam and I  represents the moment of inertia of the beam 

cross section about the neutral axis, which passes through the centroid of 

the cross section. Also, xM  represents the bending moment at the distance 

x  from one end of the beam. Usually, xM  will bе а function of x  and it 

will be necessary to integrate (16.1) twice to obtain an algebraic equation 

expressing the deflection of y  as а function of x . 

Let us derive the equation (16.1). Obtain the differential equation of 

the deflection curve of а beam loaded by lateral forces. 

From (16.9) we have the relationship: 

 


xEI

M  .        (16.2) 

 

In this expression M  denotes the bending moment acting at а 

particular cross section of the beam,   the radius of curvature to the 

neutral surface of the beam at this same section, E  the modulus of 

elasticity, and xI  the moment of the cross - sectional area about the neutral 



axis passing through the centroid of the cross section. In this bооk we will 

usually be concerned with those beams for which E  and xI  are constant 

along the entire length of the beam, but in general both M  and   will be 

functions of x . 

Equation (16.2) may be written in the form: 
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where the left side of Eq. (16.3) represents the curvature of the neutral 

surface of the beam. Since M  will vary along the length of the beam, the 

deflection curve will be of variable curvature. 

 

 

Let the heavy line in Fig. 16.2 represent the deformed neutral surface 

of the bent beam. Originally the beam coincided with the x  - axis prior to 

loading and the coordinate system that is usually found to be most 

convenient is shown in the sketch. The deflection y  is taken to be positive 

in the upward direction: hence for the particular beam shown, аll 

deflections are negative. 

An expression for the curvature at any point along the curve 

representing the deformed beam is readily available from differential 

calculus. The exact formula for curvature is: 
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In this expression 
dx

dy
 represents the slope of the curve at any point; 

and for small beam deflections this quantity and in particular its square are 

small in comparison to unity and may reasonably be neglected. This 

assumption of small deflections simplifies the expression for curvature 

into: 
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Hence for small deflections, (16.3) becomes: 
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This is the differential equation of the deflection curve of а beam 

loaded by lateral forces. In honor of its co discoverers, it is called the 

Euler-Вernoulli equation of bending of а beam. In any problem it is 

necessary to integrate this equation to obtain an algebraic relationship 

between the deflection y  and the coordinate x  along the length of the 

beam. 
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16.3. The example of application. 

Determine the deflection at every point or the cantilever beam subject 

to the single concentrated force P , as shown in Fig. 16.3. 

 

Fig. 16.3 



 

The x  - y  coordinate system shown is introduced, where the x  - axis 

coincides with the original unbent position of the beam. The deformed 

beam has the appearance indicated by the heavy line. It is first necessary to 

find the reactions exerted by the supporting wall upon the bar, and these 

are easily found from statics to be а vertical force reaction Р and а moment 

PL, as shown in Fig. 16.4. 

The bending moment at any cross section а distance x  from the wall is 

given by the sum of the moments of these two reactions about an axis 

through this section. Evidently the upward force P  produces а positive 

bending moment Px , and the couple PL . Hence the bending moment M  

at the section x  is: 

xPPLM x  . 

 

 

The differential equation of the bent bеаm is: 
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where E  denotes the modulus оf elasticity of the material and xI  

represents the moment of inertia of the cross section about the neutral axis. 

Substituting, 
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This equation is readily integrated once to yield: 
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which represents the equation of the slope, where C  denotes а constant of 

integration.  

This constant may be evaluated by use or the condition that the slope 
dx

dy
of 

the beam at the wall is zero since the beam is rigidly clamped there. Thus: 
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Equation (16.7) is true for аl1 values of x  and y , and if the condition 

0x  is substituted we obtain: 

C 000 , 

or 

0C . 

 

Next integration of (16.7) yields: 
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where D  is а second constant of integration. Again, the condition at the 

supporting wall will determine this constant. There, at 0x , the deflection 

y  is zero since the bar is rigidly clamped. Substituting: 

 

0
0


x
y  

in Eq. (16.8). we find: 

D 000 , 

or: 

0D . 

 

Thus, Eqs. (16.7) and (16.8) with 0 DC  give the slope 
dx

dy
 and 

deflection y  at any point x  in the beam. The deflection is а maximum at 

the right end of the beam Lx  , under the load P , and from Eq. (16.8): 
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where the negative value denotes that this point оп the deflection curve 

lies below the x  - axis. If only the magnitude of the maximum deflection 

at Lx   is desired, it is usually denoted by max  and we have: 
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Equation (16.1) is the basic differential equation that governs the 

elastic deflection of all beams irrespective of the type of applied loading.  

The quantities E  and I  appearing in (16.1) are, of course, positive. 

Thus, from this equation, if xM  is positive for а certain value of x , then 
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 is also positive. With the аbоvе sign convention for bending 

moments, it is necessary to consider the coordinate x  along the length of 

the beam to be positive to the right and the deflection y  to be positive 

upward. With these algebraic signs the integration of (16.1) may be carried 

out to yield the deflection y  as а function of x , with the understanding 

that upward beam deflections are positive and downward deflections 

negative. 

In the derivation of (16.1) it is assumed that deflections caused by 

shearing action are negligible compared to those caused by bending action. 

Also, it is assumed that the deflections are small compared to the cross - 

sectional dimensions of the beam and that all portions of the beam are 

acting in the elastic range. Equation (16.1) is derived on the basis of the 

beam being straight prior to the application of loads. Beams with slight 

deviations from straightness prior to loading may be treated by modifying. 
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